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1. INTRODUCTION
Simultaneous Localization and Mapping 
(SLAM) has been one of the most researched 
area in computer vision because of its wide-
ranging applications in robots aiding military, 
space exploration, security and surveillance, 
disaster relief operations, underwater ridge 
mapping and even autonomously operating 
household appliances. It provides the basic 

building block for any autonomous strategy as 
it solves the localization problem in GPS denied 
environments and mapping the workspace 
for Situational Awareness of the user. SLAM is 
composed of several steps, it can be defined in 
the most generalized way as “feature extraction 
and association from perception through sensors 
for updated state estimation and information 
accumulation.” 
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ABSTRACT 
Size, Weight and Power (SWaP) constraints in robotics cause vSLAM strategies to prefer using 
monocular cameras due to their high information-to-weight ratio and miniature size. Conventional 
monoSLAM methodologies compete with stereo and RGB-D SLAM on the front of localization; 
however, 3D reconstruction of the environment is limited to sparse point clouds. In this paper, ϐirstly, 
we have reviewed challenges (inherent scale ambiguity and map initialization) that have emerged in 
Conventional monoSLAM due to the fact that depth information of the scene is lost. This has eventually 
led to the development of deep learning based vSLAM strategies. Secondly, Learned vSLAM strategies 
(amalgam of CNNs with conventional vSLAM strategies), their eminence over conventional monoSLAM 
and impeding limitations of deep learning architectures have been reviewed extensively. Reviewed 
strategies include CNN SLAM, Scale-aware monocular SLAM, CNN SVO, DTAM (Dense Tracking And 
Mapping), Online Adapted Depth Prediction, and Sparse2Dense (S2D). By the end we have discussed 
the future prospects of Learned vSLAM which can be explored further.
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While these steps involve theoretical formulation 
of arduous mathematical equations, the basic 
objective behind all stays the same. Execution of 
each step critically influences the performance 
and complexity of SLAM but the most important 
aspect is the selection of sensors that collect 
workspace information and directly affect the 
precision level of the generated result. Therefore, 
several sensory options have been explored by 
the research community with the objective of 
accurate pose estimate and detailed mapping 
of the environment. Options include Laser 
scanners [1]– [3], IR sensors [4], monocular 
[5], [6], stereo [2], [3] and RGBD cameras [7], 
[8]. However, all these sensors carry limitations 
in their domain. Laser scanners and IR sensors 
provides limited information of the workspace 
and their performance deteriorates in cluttered 
environments therefore are used in conjunction 
with vision-based sensors [1], [2], [4], [7], [8]. 
SLAM that uses visual sensors (cameras) for 
perception goes by the name of visual SLAM 
(vSLAM). 

Amongst visual sensors, Stereo cameras are a 
popular choice for accurate odometry of robots. 
State of the extracted features can be estimated 
from a single capture by the two separate cameras 
which present a stereo baseline between similar 
features. 3D feature position estimates are used 
for matching to subsequent captured frames for 
sequential update to robot position estimate 
and mapping. However, a sparse or semi-dense 
map is produced depending upon the tracked 
features. Depth estimates of features at large 
distances cannot be computed because of the 
relatively small offset between cameras [9], [10]. 
Monocular cameras have attracted lot of research 
due to their common availability and high 
information-to-weight ratio. Complexity arises 
in their usage, as a single image does not provide 
full state of the extracted features which causes 
scale ambiguity. Monocular SLAM strategies are 

required to be initialized first by defining the 
coordinate system of the environment before 
tracking and mapping starts. However, there are 
still limitations of calculating a metric scale and 
reduced stereo baseline under pure rotation [11]. 
With the availability of low cost RGB-D cameras 
like the Microsoft Kinect, depth estimation task 
on features has been replaced by sensed depth. 
IR sensors are used for depth perception through 
pattern projection in the Kinect v1 or time-of-
flight in the Kinect v2. But depth channel has 
limited range (0.4-4.5 m) and performance of 
depth sensors deteriorates in varying lightening 
conditions [12].

With the advent of deep learning architectures 
based on Convolutional Neural Networks (CNN) 
and their outstanding performance in handling 
images for object recognition, detection, 
classification, localization and segmentation 
[14], a new class of vSLAM has emerged with 
the name of Learned SLAM. These strategies use 
CNNs for predicting depth on single image by 
learning monocular cues or they regress to learn 
the optical flow and odometry from sequence 
of frames to predict relative pose estimate 
of the platform. This has enabled the use of 
miniature monocular cameras on Size, Weight 
and Power (SWaP) constrained robots for dense 
map generation and helped to eliminate scale 
ambiguity of monocular camera-based SLAM 
(monoSLAM) strategies. Result comparisons like 
that shown in Fig. 1 help in clearly showing the 
advantages in scale ambiguity.

In this paper, a survey of deep learning based 
vSLAM strategies is presented and improvements 
over monoSLAM strategies are discussed. We 
present a summary of learned SLAM strategies 
presented in literature, encompassing their 
main modules for understanding of the readers 
and critically analyse them on resulting pose 
estimation accuracies, nature of map generation
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Figure-1: Mapping comparison and between Learned (CNN-SLAM)-left and Conventional 
Mono SLAM (LSD-SLAM)-right showing scale ambiguity 

(Adapted from [13])

and sub modules added to them for purpose of 
effective robot navigation. Forthcoming sections 
in the paper are organized as follows. In Section 
2, literature review is presented which highlights 
the advancements from conventional monocular 
to Learned vSLAM and works closely linked to 
the domain.   Section 3 gives a brief overview 
of proposed learned vSLAM strategies however 
for detailed understanding we recommend 
consulting the referenced research papers. We 
have conducted an analysis of all these strategies 
with reference to monoSLAM strategies in 
Section 4.  Finally, the survey is concluded in 
Section 5.

2. History of Visual SLAM
Miniature size and high information to weight 
ratio of monocular cameras has always fascinated 
researchers for use in Size, Weight and Power 
(SWaP) Constrained robots [15]. As robots are 
developed with the aim of being autonomous and 
independent of user/external aids to carry out 
their assigned tasks; localization and perception 
of surroundings is critical for their operation 
which SLAM readily provides for. Stereo camera 
equipped robots use stereo baseline for depth 
estimation or RGB-D sensor equipped robots 
make use of designated IR scanners for depth 
estimation. However, monocular camera 

equipped robots require complex algorithms to 
estimate third parameter of the landmark being 
tracked, that is depth. 

In this regard, the first work was presented in 
2003 with the name of MonoSLAM [16]. It uses 
Extended Kalman Filter (EKF) to track pose 
estimates of the camera and landmarks that 
are updated in the state vector. As the map is 
built over time the state vector gets larger and 
it becomes diffi cult to continue the process in 
real time. Also, it requires landmarks at known 
locations to initiate. To solve the complexity of 
MonoSLAM in larger environments, PTAM [17] 
presented the idea of tracking and mapping in 
different threads. Instead of initialization from 
known landmarks, it uses a five-point algorithm 
for initial mapping. ORB-SLAM [18] is one of 
the most complete feature-based tracking and 
mapping strategies which uses ORB features 
and employs bundle adjustment, closed loop 
detection and pose-graph optimization for 
accurate pose estimation, globally consistent 
mapping and drift cancellation as an all-in-one 
package.

Besides these feature-based tracking strategies 
which require hard coded feature descriptors 
in the environment and construct sparse maps, 
direct SLAM methods have also been proposed 
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which use photometric details in the image for 
tracking. This enabled the use of monoSLAM 
strategies in featureless environments and 
provided dense maps. DTAM [19] and LSDSLAM 
[20] are one of the most well-known strategies of 
Direct monoSLAM. DTAM tracks complete images 
by comparing them from reconstructed 3D map 
for pose estimation and estimates depth on all 
pixels. It produces dense maps, the photometric 
inconsistency amongst pixels that it requires 
for accurate mapping is hard to come by in 
many scenarios. Therefore, LSD-SLAM proposes 
to limit tracking on intensity gradients in the 
image and use photometric residuals among 
images to ascertain camera pose. It also employs 
pose graph optimization for consistent global 
maps. However, semi-dense maps are produced 
comprising of areas having intensity gradients. A 
survey covering detailed aspects of monoSLAM 
strategies presented from 2010 to 2016 has 
presented by Taketomi et al. [11].

Use of deep learning architectures for depth 
prediction by learning the monocular cues in 
presented images during training, has set a new 
path for monoSLAM. Predicting depth from a 
single image can be an ill posed problem, as 
the same image can be rendered from many 
scenes at multiple scales, but architectures can 
learn the scale of environments that humans 
live in and predict accurate enough depths. 
For that researchers have used deeper and 
deeper architectures of CNNs and crafted the 
loss functions to help the network focus on 
specific details of the training dataset. Several 
research works have been presented in the last 
decade which improve the accuracy of predicted 
depth and bring it closer to the sensed depth. 
The presented algorithms start from the use 
of a dual scaled network, predicting coarse 
outputs on the image enabling the network to 
learn global cues and passing to a finer scaled 
network for improving the details of predictions 
[21]. Another direction was presented by using 
CNN models of AlexNet [22] and VGG [23] with 
Conditional Random Fields (CRF), learning the 
depth at finer resolutions after sub-patches of 
the input image [24–26]. By using deeper CNNs 

like ResNet50 and using up-projection blocks 
to maintain the resolution of input image, Laina 
et al. reported depth prediction results of more 
than 80% δ1 (Number of predictions within 
1.25 m of ground truth) accuracy [27]. Another 
notable work has been presented by Godard et 
al. in which instead of training the network on 
ground truth depth, stereo images are used to 
train the network. Network learns disparity by 
using a loss function comprising of matched 
appearance by left and right image, disparity 
smoothness and consistency in left-right image 
disparity. Disparity images are then used to find 
depth image with known camera focal length 
and baseline [28]. A recent survey covers the 
deep learning architectures designed for depth 
prediction from single images from 2014 to 2018 
[29].

By infusing the power of deep learning 
architectures with monoSLAM for depth 
estimation, research has shown to resolve the 
issues of scale ambiguity, initialization to large 
uncertainty, failure because of pure rotation 
and sparse map generation. In this domain, 
foundation was laid by Laina et al. who along 
with presenting a novel Fully Connected 
Residual Network (FCRN) architecture showed 
its application to SLAM [27]. 3D reconstructed 
map using predicted depth was lacking shape 
details because of blurring effect on the 
borders of the object, however, it opened a new 
direction in vSLAM. Tateno et al. were the first 
to implement a complete learned SLAM strategy 
by infusing key-frame based depth estimation on 
intensity gradients with predicted depth maps 
[13]. To lower the trainable parameter bulk 
in deep learning architecture and improve on 
consistency of depth prediction on overlapping 
key-frames, Bloesch et al. propose using intensity 
image instead of RGB image with autoencoder-
like network architecture and using photometric 
and geometric residuals to estimate the best pose 
for a key-frame [30]. Similarly, the Sparse2Dense 
adds surface normal along with predicted depth 
by using Fully Connected Dilated Residual 
Network (FCDRN) instead of FCRN in CNN-SLAM 
and report results with improved accuracy [31].
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Instead of using CNNs only for depth prediction, 
another class of learned SLAM algorithm uses 
fully learned architectures to predict pose along 
with depth from a sequence of images. Number 
of research works have been proposed in this 
domain, few targeting learned pose estimation 
only, therefore are not included in this survey 
[32–35]. However, those which are generating 
depth maps from monocular images and using 
them for visual odometry are made part of this 
survey as these strategies can potentially be 
extended to full scale SLAM by mapping the depth 
map on RGB images and generating a 3D point 
cloud. These include CNN-SVO [36] and Scale-
aware Monocular SLAM [37]. A similar work 
surveys the research presented in the domain 
up to 2017, however, valuable contribution has 
been made in following years which has been 
covered in this review. 

Another closely related class that provides 
pose estimation and mapping is Structure 
from Motion (SfM). SLAM can be differentiated 
from SfM in that SLAM works on sequence of 
images for pose estimation and mapping while 
SfM deals with unordered images to enhance 
the reconstructed map, identifying the camera 
poses while doing so. Furthermore, SLAM is built 
computationally light therefore can run in real-
time. Many techniques have been introduced 
to limit the optimization on subset of data 
instead of complete map like using limited key-
frames, using computationally simpler feature 
descriptors, and tracking methodologies, de-
linking tracking, and mapping threads.

On lines of SfM, many deep learning 
methodologies has also been built like SfM-Net 
[38], DeMoN [39] and Unsupervised learning 
of Depth and Ego-Motion [40]. These can easily 
be confused to SLAM, as end product of both 
strategies is the pose estimation and accurate 
depth map. However, they can be distinguished 
on above-mentioned points and are not kept as 
part of this survey to keep this survey focused 
on SLAM.

3. Learned vSLAM Strategies

3.1 CNN SLAM
CNN SLAM [13] proposes semantic reconstruction 
of scene using key-frames. Depth is predicted on 
key-frames using Convolutional Neural Network 
[27] that is infused with estimated depth. For 
depth estimation LSD-SLAM key-frame based 
tracking is used on intensity gradients [20]. 
Camera pose is estimated on each input frame 
by comparing it with the nearest key-frame and 
minimizing the gradient residual. CNN predicts 
depth only on the key-frames and predicted 
depth is sequentially refined using uncertainty 
maps. Uncertainty map is calculated by square of 
the difference between depth maps of reference 
key-frame and transformed current key-frame 
according to the estimated camera pose. Then 
the raw predicted depth is refined by weighted 
sum based on uncertainty map of current and 
reference keyframe. This enables refinement 
of predicted depth by giving more weightage 
to estimated depth in high gradient regions 
while plane regions in image will hold predicted 
depth. Global map is generated after pose graph 
optimization on every key frame as shown in Fig. 
2. Proposed strategy not only refines the CNN 
predicted depth with key-frame based estimated 
depth but also improves upon prediction 
inconsistencies of same pixels from different 
camera poses. CNN SLAM has also proposed 
adjustment of predicted depth with ratio of 
focal lengths of the cameras (that have been 
used for prediction and CNN training). Authors 
report 20 % increase in accuracy of predicted 
depth after adjustment and refinement. Dense 
3D reconstruction of the scene is carried out 
with refined depth map and monocular camera-
based pose estimates. Authors also propose to 
use semantic labels predicted by the CNN for 
scene reconstruction [41]. Depth prediction 
CNN architecture used by the authors is trained 
on the NYU dataset and proposed strategy is 
evaluated on the ICL-NUIM [42] and TUM RGB-D 
SLAM datasets [43]. Targeted benchmarks for 
evaluation of results are absolute trajectory error 
and percentage of correctly estimated depth. 
CNN-SLAM reports low absolute trajectory 
error as compared to state-of-the-art monocular 
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camera-based SLAM strategies with highly dense 
3D maps. Due to fusion with estimated depths 
and uncertainty map based refinement, blurring 
effect in raw depth prediction has also been 
reduced. Due to use of CNN predicted depth, 
SLAM does not fail under pure rotation of the 
camera and pose estimation on absolute metric 
scale is provided removing the scale ambiguity 
of monoSLAM strategies.

3.2 Scale-Aware Monocular SLAM
Scale-aware monocular SLAM [37] is composed 
of two modules (a) An end-to-end CNN based 
depth prediction module and (b) a Feature based 
monocular SLAM system. The depth prediction 
module receives consecutive monocular images 
as inputs and in return gives corresponding depth 
maps. Mono depth CNN architecture [28] is used 
for this purpose which is trained on stereo images 
to predict disparity that is used to calculate the 
depth map. For pose estimation ORB-SLAM is 
used which tracks ORB features in successive 

frames for initialization and then depth of 
particular point is calculated using triangulation. 
However, scale-aware monoSLAM uses predicted 
depth to determine 3D coordinates of the feature 
and therefore does not require initialization.

Authors have used the Cityscapes [44] and 
KITTI dataset [45] for Monodepth architecture 
training and evaluated the proposed strategy 
on the KITTI dataset. Main benchmark for 
result evaluation is translational and rotational 
drift over the distance covered. Improved 
results on part of pose estimation are reported 
as compared to monocular ORB-SLAM while 
results are comparable with stereo ORB-SLAM. 
Authors also report robustness of this strategy 
over monocular ORB-SLAM in pure rotational 
movement of the sensor. However, results of 3D 
mapping with estimated poses are not reported.

Figure-2: CNN-SLAM Flow Diagram [13]

Figure-3: Scale-aware monoSLAM Flow Diagram [37]
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3.3 CNN SVO
Semi direct Visual Odometry (SVO) [46] combines 
the strengths of direct and feature based methods. 
It offers an effi cient probabilistic mapping 
method for direct camera motion estimation. 
One of the limitations is its initialization with 
large depth uncertainty which causes error in 
feature correspondence because of large search 
range along the epipolar line and a high number 
of measurements for converging to the true 
depth. CNN SVO [36] improves by initialization 
from depth prediction through CNN from 
single images. This reduces the uncertainty for 
identifying the corresponding features. A depth 
filter is used to separate good depth predictions 
of CNN from bad. Two consecutive image frames 
are used for image and feature alignment. It is 
followed by pose and structure refinement for 
tracking. Depth estimation is done on key frames 
whereas all the frames are used for updating 
depth filter. An overview of methodology is 
shown in Fig. 4.

CNN SVO also uses Monodepth encoder-decoder 
architecture [28] for depth prediction that is 
based on ResNet50. Pre-trained network on the 

Cityscapes dataset is used that is further fine 
tuned on the KITTI dataset [45]. To make it robust 
for high dynamic range (HDR) environments, 
random adjustments of brightness are done. 
Strategy is evaluated on the KITTI dataset 
benchmark of Absolute Trajectory Error (ATE) 
and compared with the results of SVO [46], DSO 
[47] and ORB-SLAM [48] strategies. Authors 
report robustness of strategy to produce pose 
estimate on metric scale and claims denser map 
generated as compared to SVO. However, mapping 
results are not reported on a benchmark.

3.4 DeepTAM
DeepTAM [49] is a fully learned method which 
uses CNNs to perform tracking and mapping. For 
the tracking part it follows an approach similar 
to that of DTAM (Dense Tracking And Mapping) 
[19]. CNNs are used for aligning of keyframes of 
both colour and depth image to current frame 
of colour and depth image. Refinement of the 
estimated camera pose is done by the network 
incrementally. To help in convergence of the 
predicted camera pose, a virtual keyframe is 
updated in every step. To track the camera pose, 
a transformation matrix is estimated that maps 

Figure-4: CNN SVO Flow Diagram [36]
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a point to coordinate system of current camera 
frame from the coordinate system of key-frame. 
CNN is used to learn increment of transformation 
while finding 2D-3D correspondence between 
the key-frame and the current image. They 
have used an encoder decoder architecture for 
learning to estimate 6 DOF pose. The last part 
which is used for pose generation in terms of 
translation and rotation vectors, has 64 branches 
of fully connected layers sharing their weights. 
For tracking in real time, a coarse-to-fine strategy 
is used in which the pose estimation is dealt at 
three different tracking networks. This is done 
at three different resolutions and prediction 
is refined at these levels. For training of their 
neural network, they have used the SUNCG [50] 
and SUN3D [51] datasets.

For the mapping part the network is built upon 
the plane sweep stereo idea. The information 
from multiple images is combined together 
in a cost volume and then refined with all the 
collected depth measurements. For further 
improving the depth prediction, a network is 
appended, which, using a cost function defined 
on a narrow band around the previous surface 
estimate, iteratively refines the depth prediction. 
A coarse-to-fine strategy is applied along the 
depth axis. Mapping is subdivided into fixed band 
module and narrow band module. Depth labels 
and cost volume built by fixed band module are 
evenly spaced in the whole depth range, while 
narrow band module’s cost volume is centered 
at current depth estimation and information is 
accumulated in a small band close to estimate. 
Training of mapping network is performed 
on the SUN3D [51] and SUNCG [50] datasets. 
Moreover, the authors also generated their own 
dataset called MVS.

3.5 Online Adapted Depth Prediction
Hongcheng et al. [52] proposed integration of 
LSD SLAM [20] with an online-updated CNN 
to progressively increase the completeness 
and accuracy of monocular mapping. To 
facilitate robust online adaptation of CNN 
model, several effective and computationally 
effi cient mechanisms are proposed which can 

choose reliable and robust training data. To 
ensure satisfactory generalization and effi cient 
adaptation of CNN on-the-fly, a stagewise SGD 
training method with selective update scheme 
has been used. Framework is composed of four 
major modules direct monocular SLAM, depth 
prediction through online adapted CNN, depth 
scale regression and fusion. Flow diagram 
interconnecting these modules is shown in Fig. 5.

The key-frame selected along with its camera 
poses is buffered into a training sample pool. 
Depth prediction is performed using weakly a 
supervised approach [53]. The first part is based 
on ResNet-50, excluding the fully connected 
layers. A convolution layer followed by FCN [54] 
with skip connections and three deconvolutional 
layers. Initially, a pretrained model is used to 
predict the pixel-wise depth of input images. 
When the depth prediction through CNN is not 
good enough and the training sample pool of 
key-frames is full, the buffered training samples 
are used to fine-tune the model. During the 
process of fine-tuning the depth prediction is 
still performed with the old model. Once the 
model is fine-tuned, it replaces the old model and 
starts performing depth prediction. The depth 
predicted and semi-dense map of key-frames are 
both used together to regress the absolute scale 
of the semi-dense map. Finally, fusion of dense 
and refined semi-dense map is performed.

Proposed CNN architecture was trained on the 
Wean Hall dataset [55] and evaluated on the 
ICL-NUIM [42] and TUM RGBD [43] datasets. To 
compare the performance of tracking accuracy, 
results have been compared with CNN-SLAM [13] 
and LSD-SLAM [20] on the metric of Absolute 
Trajectory Error (ATE). Moreover, CNN regressed 
scales of various ICL-NUIM and TUM-RGBD 
sequences are reported close to the ground truth 
scales. For generalization of camera parameters, 
focal length adjustment is carried out. To cater 
for the scale problem of Monocular scale, authors 
[52] have also used absolute scale regression 
method. However, proposed online training 
strategy could only be used for horizontal motion 
and the baseline within a batch needs to be fixed.
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3.6 Sparse2Dense
The Sparse2Dense (S2D) [31] framework is 
divided into four stages (a) Learning based prior 
generation for depth/normal, (b) Visual tracking 
using direct alignment, (c) Geometrical sparse 
to dense reconstruction and (d) Fusion-based 
mapping. Flow diagram of framework is shown 
in Fig. 6. For depth and normal estimation, 
network is named as Fully Connected Deep 
Residual Network (FCDRN). In FCDRN the 
encoder part of FCRN [27] is replaced by Deep 
Residual Network (DRN) [56]. Rather than using 
up sampling residual block the network is trained 
to predict depth/normal at three different 
scales. The learned depth is used to achieve 

geometric optimization, reduction in scale drift 
and improvement in accuracy of monocular 
camera pose estimation. This gives optimized 
sparse depth estimates, which is converted into 
dense point cloud using surface normal based 
geometric reconstruction. In S2D DSO [57] is 
used as monocular VO (visual odometry).

Training of network is done on the SUN-3D 
[51] and SUN-RGBD [58] datasets. Evaluation is 
performed on same datasets as CNN-SLAM [13] 
which are TUM-RGBD and ICLNUIM datasets. 
S2D outperforms DSO [57], CNN-SLAM [13], LSD 
[20], ORB [48] and the method proposed by Laina 
et al. [27] on the metric of Absolute Trajectory 
Error (ATE). 

Figure-5: Online Adapted Depth Prediction Network Flow Diagram [52]

Figure-6: Sparse2Dense Flow Diagram [31]
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*For, Batch Size: 1 and ϐloat32 variable

4. Analysis
To analyze the progress made by learned vSLAM, 
we enumerate the limitations of conventional 
monoSLAM strategies and discuss how these have 
been tackled in surveyed methodologies. The 
Initialization, Scale Ambiguity, Pure Rotation and 
Sparse 3D Reconstruction are discussed. In each 
case, the disadvantages faced by conventional 
monoSLAM strategies are presented, followed by 
how Learned vSLAM tackles these issues.

4.1 Initialization
Map initialization is a well-known issue for 
monocular sensors as depth information is 
lost when a 2D image is captured. Therefore, 
it requires sequential images to estimate the 
depth on image disparity when adequate stereo 
baseline is achieved. Even then the map is 
initialized with large depth uncertainties and are 
converged after several key-frames are passed 
[20]. Alternates are initialization with known 
landmark states adding to the load of novice 
operators [16] or using epipolar geometry that 
requires parallax from non-planar scenes [18]. 
However, in learned vSLAM strategies maps are 
initialized with the use of CNN predicted depth 
on single image based on learned monocular 
cues.

4.2 Scale Ambiguity

From the fact that same image can be rendered by 
environments of infinite scales, ambiguity arises. 
MonoSLAM strategies are therefore initialized 
with features of known state [16], [59], epipolar 
geometry [17] or metrically scalable information 
from extra sensors [60] and use global Bundle 
Adjustment to limit scale drift [18]. However, 
CNNs not only learn to predict pixel wise depth 
but scale of the environment on which they 
are trained on. Discussed Learned SLAM and 
VO strategies initialize their pose estimation 
with predicted depth hence limiting the initial 
ambiguity of the environment scale. But this also 
means that such strategies will fail to initialize 
in environments on which they are not trained. 
To eliminate the issue, online depth prediction 
strategies propose to tune the network on-the-
fly for regressing true scale of the environment 
[52].

4.3 Pure Rotation
During pure rotation movement of the sensor, 
image disparity between successive frames 
is lost which inhibits the depth estimation 
based on stereo baseline. In learned vSLAM, 
depth estimation in conventional monoSLAM is 
empowered with predicted depth fusion. Hence, 
depth information on frames, not providing 
image disparity, is still available enabling SLAM 
to continue pose estimation and mapping of the 
environment.

 Learned      CNN Parameter    Memory* Training dataset
  SLAM  (million approx.) (GB approx.) size (samples)
 CNN SLAM FCRN 62 0.25 96 k
 Scale-aware Monodepth 31 0.12 68.4 k
 monoSLAM
 CNN SVO Monodepth 48 0.19 68.4 k
  (Resnet-50)   
 DeepTAM DeepTAM 24 0.1 -
 Online Adapted Resnet-50 12 0.05 42.09 k
 Depth Pred    Pairs
 Sparse2Dense FCDRN 25 0.1 54.62k

Table 1: CNN Parameters Summery



Technology Forces | Volume 3 | Issue 238

Karachi InsƟ tute of Economics and Technology

4.4 Sparse 3D Reconstruction
Feature based monoSLAM strategies track and 
map limited features like SIFT, SURF, ORB, etc 
and direct monoSLAM like LSD-SLAM maps 
pixels with intensity gradients. DTAM requires 
enough pixel wise difference to map the 
environment accurately which is not the case 
in most human made environments comprising 
of planar walls and objects [19]. Therefore, top 
of the line monoSLAM strategies lose clarity of 
3D reconstructed maps or require multiple rolls 
on a scene to map it densely. Whereas, learned 
vSLAM uses pixel-wise predicted depths from 
CNNs that enables dense reconstruction of the 
environment. 

With the use of CNNs in visual odometry and 
3D reconstruction, monoSLAM performance 
has approached the performance of state-
of-the-art stereo and RGB-D camera based 
vSLAM strategies (which are known for their 
accurate pose estimation capabilities and dense 
map reconstruction). However, few inherent 
limitations have also impeded the progress of 
Learned SLAM in which most glaring are lack of 
generalization capability, bulk of training data 
required to tune the millions of CNN parameters 
and memory utilization of the SLAM embodying 
multi layered deep learning architectures. 

CNN parameters affect training time and data 
required while memory utilization has been 
abated by low-cost Graphic Processing Units, 
still these parameters play an important role in 
steadfast applicability of the whole system in any 
generic environment. Therefore, an approximate 
calculation of the number of tuneable parameters 
and memory consumption (with assumed float 
32 variable use) is carried out on the basis of 
information provided in relevant literature of 
surveyed methodologies and an overview of 
these important CNN parameters are provided in     
Table 1. Generalization capability of the learned 
vSLAM is fundamental to the operation of the 
system employing them. Therefore, surveyed 
strategies evaluate their vSLAM methodology on 
datasets they are not trained on. Datasets used 
for training and evaluation of learned vSLAM 
strategies along with benchmarks on which they 
are assessed on have been summarized in Table 2. 
Furthermore, we have tabulated the theme of the 
proposed strategies and listed their limitations. 
However, we recommend consulting each of the 
referenced works for a detailed understanding of 
their working.

Table 2: Learned vSLAM Strategies Summary
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5. Conclusion
Learned vSLAM strategies (based on deep 
learning) have provided a new avenue to 
Simultaneous Localization and Mapping, that is 
one of the most researched areas in the field of 
robotics. By eliminating the inherent issues of 
conventional monoSLAM methodologies, they 
promise dense reconstruction of the surroundings 
and accurate situational awareness for robots 
equipped with simple monocular cameras. But 
deep learning methodologies employed in this 
field do require state-of-the-art hardware for 
real-time computations, which may force robots 

to use off-board computations. However, as 
hardware platforms become more powerful, and 
algorithms become more optimized, prospects 
for utilizing computationally expensive Learned 
vSLAM strategies on-board mini robots are 
bright. Future work includes optimization of 
Learned vSLAM implementation on mobile 
robots (with limited processing capacity due to 
SWaP constraints). 
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